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Abstract
On-device sensors in mobile systems, e.g., autonomous

vehicles and AR/VR, use odometry for real-time position-
ing, but they risk capturing sensitive data of non-consenting
bystanders. Prior works have investigated various privacy-
preserving techniques to protect those sensitive data. How-
ever, it is still unclear about the impact of such approaches
on the accuracy of odometry. In this work, we investigate
the impact of various privacy-preserving obfuscation tech-
niques on the accuracy of monocular visual odometry. We
focus on three widely used obfuscation methods: Gaussian
Blur, Gaussian Noise, and Laplacian Noise, applied to protect
bystander privacy. Our investigation reveals that some ob-
fuscation techniques can increase the odometry errors by up
to 56.9%, while others surprisingly reduce the errors by up to
66.8%, compared to raw data. Our key findings indicate that
data obfuscation primarily affects the duration of tracking
loss in ORB-SLAM3, which is the main source of the errors,
and successful relocalization immediately following tracking
loss plays a crucial role in reducing the overall errors.
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1 Introduction
Odometry plays a crucial role in manymobile systems, e.g.,

autonomous vehicles and augmented/virtual reality (AR/VR).
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It relies on data from on-device sensors (e.g., cameras, gy-
roscopes, and accelerometers) to estimate the device’s pose
(location and orientation) in real time. However, the sensor
data being collected may include sensitive information of
individuals who share the same physical space with the de-
vice. These individuals, whomwe refer to as bystanders, may
not consent to having their sensitive information exposed,
resulting in severe privacy leakage issues for odometry.
To protect bystanders’ privacy, various innovative ap-

proaches have been proposed. Researchers have investigated
the use of adversarial perturbations to render bystanders un-
recognizable to machine learning models while maintaining
the visual integrity. However, these perturbations often lack
robustness against sophisticated attacks such as denoising or
gradient-based methods. Another avenue of research has fo-
cused on real-time computer vision techniques to detect and
then blur or block human figures or faces in video streams,
effectively anonymizing bystanders. For example, GB has
been extensively utilized to selectively blur regions in images
that contain bystander data (e.g., [2]); and differential pri-
vacy has emerged as another one of the most widely adopted
solutions, which blocks sensitive data by adding noises, e.g.,
Gaussian Noise and Laplacian Noise, to protect such data
from leakage.
However, prior works (e.g., [2]) have not thoroughly in-

vestigated the effect of obfuscating data on the accuracy of
fundamental tasks in mobile systems, particularly odome-
try. Considering odometry heavily relies on precise sensor
data to estimate poses, changes in input data e.g., by data
obfuscation, can affect the accuracy of odometry. However,
it is still unclear how odometry algorithms can be affected
by different obfuscation techniques. Understanding this as-
pect is essential for designing privacy-preserving odometry
algorithms that maximize the accuracy while still protecting
sensitive information of bystanders.
In this work, we seek to answer the following important

question: do privacy-preserving obfuscation techniques de-
grade the accuracy of odometry? To that end, we investigate
three widely used obfuscation techniques: Gaussian Blur
(GB), Gaussian Noise (GN), and Laplacian Noise (LN). We ex-
plore how these techniques and their corresponding param-
eters can affect the accuracy of monocular visual odometry,
i.e., ORB-SLAM3 [1], which estimates the pose of a device
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using images captured by a single camera. Surprisingly, we
observe that, obfuscating bystanders does not always de-
grade the accuracy of odometry. Specifically, we find that
(1) various parameters of obfuscation techniques affect the
accuracy differently for different videos; and (2) GB with
the handpicked parameters achieves 5.3%∼66.8% lower er-
rors than the Default case (i.e., without any obfuscation) and
outperforms the other techniques, which have up to 56.9%
higher errors compared to Default.

We further investigate the reasons for such improvement
with . We highlight two key findings: (1) data obfuscation
affects the duration of tracking loss in ORB-SLAM3, which
accounts for the majority of errors. (2) effective data ob-
fuscation can expedite successful relocalization, which can
mitigate the accuracy drop caused by tracking loss.

Finally, we discuss future research directions.
2 Existing Obfuscation Techniques
Gaussian Blur (GB), Gaussian Noise (GN), and Laplacian

Noise (LN) are effective obfuscation techniques for odometry
purposes due to their ability to distort or mask sensitive in-
formation while preserving overall data utility (e.g., [4]). GB
works by convolving the image with a Gaussian function, ef-
fectively smoothing out details and reducing high-frequency
components. The standard deviation (𝜎) of the Gaussian
kernel typically ranges from 0 to 100, with higher values
resulting in more aggressive blurring. GN adds random vari-
ations to pixel values following a normal distribution, while
LN adds noise based on the Laplace distribution. Both tech-
niques are controlled by the parameter 𝜖 . It usually ranges
from 0 to 1.0. Lower 𝜖 values (i.e., below 0.1) provide stronger
privacy guarantees. These techniques effectively obfuscate
data by introducing controlled levels of uncertainty or distor-
tion, making it difficult to extract precise information about
individual data while maintaining the overall structure and
statistical properties of the dataset, thus protecting privacy
of bystanders in odometry applications.
3 Experimental Setup
Dataset. We choose ADVIO [3], a dataset for pedestrian
odometry, to estimate a person’s pose (position and orien-
tation) while walking through varying real-world environ-
ments, both indoors and outdoors. We select four video se-
quences, i.e., A01 (indoor, mall A), A10 (indoor, mall B), A14
(indoor, office) and A20 (outdoor), representing different sce-
narios with varying numbers of bystanders. Among the four
videos, A01 has the largest number of bystanders.
Methodology. To protect the privacy of bystanders, we first
run the pre-trained YOLOv10 model to detect bystanders in
the videos, considering the entire human body as the object
of interest We then apply the three obfuscation techniques to
those regions using various parameters, i.e., {𝜎10, 𝜎30, 𝜎50, 𝜎70}

for GB and {𝜖0.1, 𝜖0.01, 𝜖0.001} for GN and LN. Using the ob-
fuscated images as input, we run ORB-SLAM3 in monocular
mode to generate estimated trajectories.
To evaluate the accuracy, for each estimated trajectory,

we first align it with the corresponding ground truth trajec-
tory [1]. We then calculate the Absolute Pose Error (APE),
one of the most widely used metrics for odometry, which
essentially measures the euclidean distance between an es-
timated pose and its corresponding ground truth pose. We
finally report the mean APE for each estimated trajectory.
Baseline (Default). Considering only raw images as input.
4 Results
Gaussian Blur. Figure 1 shows that, surprisingly, GB does
not always degrade the accuracy of odometry. Compared
with Default, GB reduces errors by up to 5.3%∼66.8% for the
four sampled videos. Specifically, GB achieves the lowest
mean APE of 2.33 m (𝜎30), 1.28 m (𝜎70), 1.79 m (𝜎50), and 6.33
m (𝜎70), compared to 2.46 m, 1.89 m, 2.35 m, and 19.05 m for
Default, for A01, A10, A14, and A20, respectively.
Figure 1 also shows that different values of 𝜎 affect the

accuracy differently and the best 𝜎 value varies across the
four videos. For A01, only 𝜎30 decreases mean APE from 2.46
m to 2.33 m. The other three 𝜎 values increase the mean APE
by 12.9%∼45.2%, from 2.46 m to 2.78 m∼3.58 m. As for A10,
𝜎10 has slightly larger mean APE of 1.91 m than 1.89 m, while
the other three 𝜎 values achieve 12.4%∼32.4% smaller mean
APE, i.e., 1.28 m∼1.65 m. For A14, all the 𝜎 values achieve
7.7%∼23.8% lower errors, i.e., 1.79 m∼2.17 m, than 2.35 m. As
for A20, 𝜎30, 𝜎50, and 𝜎70 significantly increase mean APE
by 17.1%∼37.2%, from 19.05 m (Default) to 22.30 m∼26.13 m
whereas 𝜎70 drastically decreases mean APE to 6.33 m.
Gaussian & Laplacian Noise. ❶ Similarly, different 𝜖 val-
ues, impact accuracy differently, with the best 𝜖 varying
across the videos. ❷ Considering the best 𝜖 for each video
sequence, Figure 1 shows that GN performs worse than GB
by 7.07%∼217.04%, delivering errors at 2.50 m (𝜖0.1), 1.46 m
(𝜖0.01), 1.95 m (𝜖0.001), and 20.08 m (𝜖0.001) for the four se-
quences respectively, but better than Default for A10 and
A14 with mean APE of 1.89 m and 2.35 m. ❸ LN again per-
forms worse than GB in A14 and A20 by 12.6%∼19.5% and
slightly better in sequences A01 and A10 by only 1.9%, while
outperforming the Default in all four videos by 7.1%∼62.6%.
Its lowest errors are 2.29 m (𝜖0.001), 1.25 m (𝜖0.1), 2.15 m (𝜖0.001)
and 7.13 m (𝜖0.01) for A01, A10, A14, and A20 respectively.
5 Why Does Gaussian Blur Improve

Accuracy for ORB-SLAM3?
Given that GB outperforms the other methods, we next

focus on GB and investigate why it improves the accuracy
of ORB-SLAM3 compared to Default and how different 𝜎
values affect the performance of ORB-SLAM3. Due to page
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Figure 1: Mean APE comparison.
(a) Default, mean APE = 2.46 (b) Gaussian Blur (𝜎30), mean APE = 2.33
Figure 2: APE changes and TRL-PSR periods over time for A01.

Table 1: Comparison of APE spikes, duration in TRL,
and mean APE in various time periods for A01.

Methods Avg. Spike
(m)

Duration
in TRL (s)

mean APE (m)
Entire TRL PSR TRL-PSR

Default 5.58 5.08 2.46 2.84 1.31 2.16
𝜎10 6.05 4.76 3.58 4.22 1.90 3.29
𝜎30 4.54 4.44 2.33 2.65 1.05 1.95
𝜎50 4.99 5.14 2.78 3.42 1.15 2.49
𝜎70 6.02 5.04 2.90 3.50 1.92 2.75

limit, we elaborate on our findings for A01 in the rest of §5.
The other videos share similar results.

We first plot the APE variations throughout the entire
timeline of A01 for Default and GB (𝜎30) , which has the
lowest mean APE over all the methods, as shown in Figure 2.
Due to page limit, we omit the other 𝜎 values. We observe
two key common trends across different methods.
First, APE starts to increase when ORB-SLAM3 fails to

match enough ORB features of the current frame to previous
keyframes, i.e., tracking loss (TRL), and hence loses the ability
to generate new poses in real time. This is indicated by the
red shaded regions in Figure 2, e.g., 134–145 s (Default) and
77–81.5 s (𝜎30). The longer the TRL persists, the higher the
APE could be, especially when the device is moving.

Second, APE drastically drops after TRL e.g., at 145 s (De-
fault) and 81.5 s (𝜎30). This is due to successful relocaliza-
tion. During TRL, ORB-SLAM3 attempts relocalization, es-
sentially searching in its keyframe database for the most
similar keyframe to the current frame. When the match is
found and checked for temporal and geometric consistency,
relocalization is considered successful and a new accurate
pose is estimated. However, relocalization cannot be per-
formed for every frame due to its high computational cost.
Since APE is related to those APE spikes caused by TRL

and relocalization, to understand the differences between GB
(𝜎30) and the other methods, we next calculate the average
of the peak values of the spikes and the duration of TRL
per method. Table 1 shows that compared to all the other
methods, GB (𝜎30) has 9.9%∼33.3% lower APE spikes and
stays in TRL for 7.2%∼15.8% less on average.

To quantify how much relocalization can offset the ac-
curacy degradation caused by TRL for different methods,
we define Post Successful Relocalization (PSR) time periods
(light blue regions in Figure 2). PSR begins when relocaliza-
tion succeeds and continues for the same duration as the last
TRL. Note that if another TRL occurs before PSR ends, we
only consider the time until this next TRL. We calculate the
mean APE in the combined time periods of TRL and PSR, de-
noted as TRL-PSR. We compare it with the mean APE during
TRL. We find that relocalization significantly mitigates
the accuracy drop of tracking loss for all the methods.
In particular, GB (𝜎30) has a mean APE of 1.95 m for TRL-PSR,
much lower than 2.65 m for TRL only and 2.33 m for the
entire trajectory; and it has the smallest mean APE in all the
time periods, compared to the other methods.
Remark: Effective data obfuscation can facilitate achieving
successful relocalization sooner, which results in lower errors.

6 Future Plans
In this paper, we take the first step towards examining

the effect of data obfuscation on odometry. In the future,
we plan to continue exploring– (1) how various obfuscation
techniques affect the duration of TRL in ORB-SLAM3 and,
consequently, odometry accuracy; (2) how to predict the best
performing obfuscation parameters in terms of odometry ac-
curacy; (3) how different odometry algorithms perform with
different obfuscation techniques; and (4) how our findings
adapt to more challenging scenarios, e.g., more bystanders.
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